
Networks and Graphs 
When you say the words networks, trees, graphs, what do you think about? 
 
Network is a word that you are used to hear in concrete settings: a computer network, a network of 
friends, social network, social networking sites… Trees will surely make you think to what you see in 
your backyard, parks and forests but also to genealogical trees. And graphs probably invoke memories 
of algebra.  In fact network, trees and graphs are very important concepts in computer science and the 
branch of mathematics that studies those concepts is called graph theory.  
 
The words networks and graphs are often used interchangeably, the work networks being used more 
often in concrete applications and a graph being often viewed as the abstract representation of the 
network. We will see later on that trees are special graphs.   
 
Let briefly discuss computer networks and social networks and see how they share some common ideas.  
A computer network is a collection of computers (or other computing devices such as printers, routers, 
etc.) that are connected. The computers or other computing devices are the nodes of the network and 
the connection cables are the links.  

The simple computer network depicted in 
Figure 1 could be the computer network of 
a small business where all computers share 
a common printer. Notice a few features of 
this network. First, as long as all links and all 
computers function, all computers can 
communicate with each other and they can 
all send documents to the printer. While 
computer A can send a document directly 
to printer P, a document issued from 
computer B must go through at least two 
other computers to get to printer P. If A 
malfunctions or is removed or if the 

connection between A and P malfunctions 
or is removed then none of the remaining 

computers can communicate with the printer P.  
 
Social networks are used to study relationships between individuals or organizations. Social networks 
analysis was develop as an important technique in sociology. The use of modern mathematics 
techniques combined with powerful computers has helped spread the use of social networks to many 
other disciplines such as economics, biology, and information science. In a social network individuals or 
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Figure 1- A simple computer network 



organizations depending of the type of interaction studied are the nodes. Nodes are linked according to 
a specific type of relationship or interdependence.  
Let suppose that we want to model 
interactions at the beginning of 
group project assignment. A link 
between two individuals means that 
they have discussed the assignment 
together. We could interpret the 
network in Figure 2 in different 
ways. For example, P is the 
professor and has discussed the 
assignment with student A only, 
who in turn has discussed the 
assignment with students C, D, and 
F. We can see that if professor P 
gave instructions to A in his 
discussion, B will hear from them 
only through either A then C or A 
then F then E.  Student A plays a major role, since she/he is the only connection between the other 
students and the professor.  
 
In both examples, the computer network and the social network, we can abstract a mathematical 
structure that is identical and that represent the fundamental concepts: the nodes and the links 
between the nodes. The mathematical structure is called a graph. Figure 3 shows the graph that would 
represent the networks of Figure 1 and Figure 2.  

A graph is a mathematical structure that consists of a set (or 
collection) of nodes called vertices and a set of links between 
vertices that are called edges. For the graph shown on figure 3 
we will denote the set of vertices by V = {a, b, c, d, e, f, p} and 

the set of edges by E = {ac, bc, cd, da, ap, ef, af, be}. 
The order in which we list the vertices or the edges in the sets 
do not matter and the order in which we list the vertices of the 
edges do not matter either. For example ac and ca represent 
the same edge.  

 
Studying properties of graphs help solve problems related to computer networks, diverse other 
computer science problems, social network analysis, and problems in many other seemingly unrelated 
applied fields.  
 

  

Figure 2- A simple social network 
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Figure 3- Graph representing simple 
networks 



Graphs: definitions and properties 
 
A graph consists of a set of vertices and a set of edges. An edge is itself a set of two vertices called the 
endpoints of the edge.  
We draw the graph by representing the vertices by dots and drawing lines (not necessarily straight) 
between endpoints of an edge. So for example, if the set of vertices of G is  V = {a, b, c, d, e} and the set 

of edges is E = {ab, ce, de, be} then the graph can been drawn as shown in Figure 4  and in Figure 5. 
. 
 

 
 Or  
 
 
 
 
 

 
We can reposition the vertices in any ways we like, as long as two vertices are connected by a line if and 
only if they are endpoints of one edge. We then get a representation of the graph. 
 
Remarks:  

• There is at most one edge between any two vertices.  

• The endpoints of an edge are always distinct.  

• An edge has no direction. So we can write its endpoints in any order. The edge ab is the same as 
the edge ba.  
 

In the social networking class activity, we introduced some definitions that we will repeat here and we 
will add a few more terms. All definitions are illustrated with examples using the graph G depicted in 
Figure 5. 
Two vertices that are endpoints of the same edge are said to be adjacent. An edge is said to be incident 
with its endpoints and a vertex is incident with and edge for which it is an endpoint. 
Example: In graph G vertices a and b are adjacent, but b and c are not because ab is an edge of the graph 
while bc is not. Edge be is incident with b and vertex c is incident with edge ec. 
 
The degree of a vertex is the number of edges incident with that vertex. We will denote the degree of 
the vertex v as deg(v). 
Example: deg(a) = a, deg(b) = 2. Find the degrees of the other vertices of G.  
 
A path is a sequence of adjacent vertices. If the first vertex in the sequence is u and the last one is v, we 
say that the path is a path between u and v.  
Example: abec is a path between a and c. bed is a path between b and d.  
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Figure 4- a representation of graph G 

Figure 5- a representation of graph G 



 
A graph is connected if there is path between any two vertices of the graph. 
Example: is the graph G connected? To answer this question, try to list a path between any pairs of 
vertices.  
 Path between a and b: 
 Path between a and c: 
 Path between a and d: 
 Path between a and e: 
 Path between b and c: 
 Path between b and d: 
 Path between b and e: 

Path between c and d: 
 Path between c and e: 
 Path between d and e: 
 Conclusion: is the graph G connected: 
Remark: If there is a path between a and b then there is a path between b and a. How do we find it? 
Example: the graph H shown in Figure 6 is not connected. Why? 

 
 
 
 
 

 
 
The length of a path is one less than the number of vertices in the path. This corresponds to the number 
of edges the path goes through. This is illustrated in Figure 7 below.  
 
The edges in the path abed are highlighted in red 
(thick lines if you see this in black and white). The 
path has 4 vertices and 3 edges. The length is 3.  

 
 
The distance between two vertices is the length of the shortest path between those two vertices. The 
distance between vertices u and v will be denoted d(u,v). 
Example: d(a, e) = 2, d (a, d) = 3. 
 
If there is no path between two vertices u and v then the distance between them is infinite. We write 

d(u, v) = ∞. The distance between a vertex and itself is 0: d(u, u) = 0. 

Example: in graph H from Figure 6, d(b, e) = ∞. Can you give other pairs of vertices in graph H that are at 
infinite distance from each other?  
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Figure 6- Graph H 
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Exercises 
1. Draw the graph with vertex set  V = {a, b, c, d, e, f} and set of edges is E = {ac, be, de, cd, , ba, fb}. 

 
2. Consider the graph G drawn below. 

a) Give the vertex set of the G. 
b) Give the set of edge of G. 
c) Find the degree of each of the vertices of the 

graph G. 
d) Add the degrees of all the vertices of the 

graph G and compare that sum to the number of 
edges in G, what do you find? 

e) Give a path of length 1, of length 2, and of 
length 3 in G.  

f) Find the longest path you can in G? 
(Remember that you cannot repeat vertices). 
 

3. Draw a graph with 6 vertices and 6 edges that is connected and a graph with 6 vertices and 6 edges 
that is not connected. 
 

4. Consider the graph G from exercise 2. Suppose that this graph represents the relationship “is friend 
of” among 7 students that are part of the same social network.  
Suppose you want to propagate a news item among this group of student, but you can 
communicate the item only to one student. You want the news to propagate as fast as possible 
(assume that the time it takes to reach a student is proportional to the number of students it has to 
go through). To which student should you communicate the item, assuming that the item will then 
be propagated within this network? Explain how you select the student.   
 

5. Draw a graph that represents a social network where you think news would propagate very slowly. 
What are some of the characteristics of this graph? 

 

Cycles and Trees 
 
A cycle is a sequence of adjacent vertices that are distinct except the first and last vertices which are the 
same.  

 For example, acda , bcafeb, or ebcdafe are cycles of the graph 
depicted in Figure 8. The length of a cycle is the number of distinct 
vertices in it. So acda has length 3, bcafeb has length 5, and ebcdafe 
has length 6. Note the length of a cycle is the number of edges that 
link the vertices in the cycle.  
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Figure 8 



A tree is a connected graph which has no cycle. The graph shown in Figure 9 is a tree. This tree has 7 
vertices and 6 edges. If we remove the edge af, without removing 
the vertices, the graph is no longer connected. This would be true 
for the removal of any other edge. 
  
 
 
 
 

 
 

 
 
 
Some properties of trees 

• A tree has one fewer edges than vertices. 

• Any tree has at least two vertices of degree one. We call the vertices of degree one leaves. 

• If we remove one edge from a tree (without removing the vertices), the resulting graph is not 
connected. 

• There is exactly one path between any two vertices in a tree.  
 

Exercises 
6. Draw the following trees or say why they do not exist. 

a) A tree with 8 vertices and 7 edges. 
b) A tree with 6 vertices. The degrees of the vertices are 3, 2, 2, 2, 2, 1. 
c) A tree with 6 vertices. The degrees of the vertices are 3, 2, 2, 1, 1, 1. 

 
7. A club with 15 members establishes a “telephone tree” to propagate information through its 

membership. This can be represented by a tree, let call it T, in the graph theory sense of the word, 
where two members are joined by an edge if one of them is charged to call the other one in the 
telephone tree. Information will come from the club president, A.  
a) The telephone tree will satisfy the rule that no member is in contact with more than three other 

members through the telephone tree (i.e. is called or call another member).  What does it say 
about the tree T? 

b) Draw the tree T so that information from A will reach any club member in the least possible 
number of phone calls.  

c) For your tree T, what is the maximum number of phone calls necessary for information from A 
to reach a member?  
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Figure 9- a tree T 
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Figure 10- T minus edge af 



Breadth-First Search Algorithm 
An algorithm is an unambiguous step-by-step finite set of instructions to solve a problem. Some of our 
more precise Alice storyboards such as the example shown in Figure 11 were algorithms. 

 
 
 
 
 
 
 
 
 

The problem-solving process of in dealing with computer problems will frequently involve either 
designing an algorithm and/or choosing one or more known algorithms, then implement the algorithms. 
We will study one such algorithm. 
 
The breadth-first search algorithm finds a spanning tree in a graph. A spanning tree T of a graph G is a 
tree that has the same vertices as the graph G and such that all the edges of T are also edges of G (some 
edges of G might not be edges of T). If a graph is connected then it has at least one spanning tree. 
The breadth-first search algorithm can be used for different purposes: 

• verify that a graph is connected; 

• find a spanning tree of a graph; 

• find the distances from a given vertex to any other vertex in the graph. 
 
Distance: the distance between two vertices in a graph is the length of the shortest path between those 
two vertices. If there is no path between the two vertices, we say that the distance is infinite.  
 
The idea of the breadth-first search algorithm is simple. The input is a graph G and an initial vertex. We 
will consider three lists: 

1. A list U of unlabeled vertices: This list will consist of all the vertices of G at the beginning of the 
process and, if the graph is connected, it will be empty at the end of the process. 

2. A list L of labeled vertices: This list will be empty at the beginning and, if the graph is connected, 
it will contain all the vertices of G at the end of the process.  

3. A list E of edges: This list is empty at the beginning and, at the end of the process, if the graph is 
connected, it will contain all the edges of the spanning tree. 

The label of a vertex mentioned in 2 corresponds to the distance between the initial vertex and the 
labeled vertex. We will label the initial vertex 0 and remove this vertex from U and place it in list L. Then 
we will visit, one at a time all the vertices adjacent to the initial vertex, label those vertices with a 1, 
remove them from U and place them in L. Also for each vertex adjacent to the initial vertex, we place 
the edge joining it to the initial vertex in E. We will illustrate the algorithm on the graph G shown in 

Parameter: who 
Do in order 
 dragon takes off 
 dragon turns to face who 
 Repeat Distance of who in front of dragon number of times 
  dragon fly 

Figure 11- Alice Storyboard 



Figure 12.  The first stage of the algorithm is shown in Figure 13.  The dashed red edges are the edges 
placed in E.  

  
Once we have visited all the vertices adjacent to the initial vertex (labeled 0), we visit, one at a time, all 
vertices that are still in U and are adjacent to some vertices labeled 1. For such a vertex, we first 
consider one edge from a vertex labeled 1 in U to that vertex and add it to E. Then we label the vertex 2, 
remove it from U and add it to L.  The result from this stage is shown in Figure 14. The edges added to E 
in this stage are shown as thin green lines. 

 
Figure 14- Breadth-first search, second labeling stage 

When all vertices adjacent to vertices labeled 1 have been labeled 2, we move to label 3, and so on, until 
we run out of vertices or there is no edge between the vertices in L and the vertices in U.  
There is a lot of imprecision in our algorithm description as illustrated by the last sentence above.  We 
need to write the algorithm more precisely. 
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Figure 13- graph G 
Figure 12- Breadth-first search algorithm, first labeling stage 



 

Breadth-first search algorithm 
Input: graph G, initial vertex: a vertex in G 
Initialization: 

Set lists L and E to be empty lists. 
Set list U to a list containing all vertices of G. 
Set label k to 0. 

Step 1: 
1.a.  Label the initial vertex with label k (0). 
1.b.  Remove the initial vertex from U.  
1.c.  Add the initial vertex to L. 

Step 2: 
 Repeat while there is a vertex in U adjacent to a vertex in L 
  2.a.  Increase k by 1 
  2.b.  Repeat while there is vertex in U adjacent to a vertex labeled (k-1) in L 
   2.b.i.    Choose a vertex in U adjacent to a vertex labeled (k-1) in L. Call this vertex u. 
   2.b.ii.   Choose a vertex labeled (k-1) in L that is adjacent to u. Call this vertex v.  
   2.b.iii.  Add the edge uv to E. Label the vertex u with the label k.  
   2.b.iv.  Remove u from U. 
   2.b.v.   Add u to L. 
Step 3: 
 If U is empty 
  The graph with vertex set L and edge set E is a spanning tree of G 
  The label of each vertex gives the distance between that vertex and the initial vertex 
 else 
  The graph G is disconnected and does not have a spanning tree 
  The label of each labeled vertex gives the distance between that vertex and the initial vertex 
     
Notes:  

• In step 2, when there are several choices for the vertices u and/or v we will always select the 
vertices that are lowest in the alphabetical order.  

• The initialization and step 1 starts the process and step 3 gives the conclusion of the process. 
Most of the “work” of the algorithm is done in step 2.  

• Indented statements are statements that are executed sequentially. For example, when the 
condition in step 2.b. is true, i.e. there is vertex in U adjacent to a vertex labeled (k-1) in L, 
statements 2.b.i. to 2.b.v. are executed sequentially then the condition of the repeat while 
statement 2.b. is checked again. If it is again true we repeat statements 2.b.i. to 2.b.v. otherwise 
we go back to check the condition “there is a vertex in U adjacent to a vertex in L”. 

 
  



Figure 15 illustrates the entire process. The spanning tree is shown in Figure 16. 
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Figure 16- Complete breadth-first search algorithm Figure 15- Spanning tree 
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